Activation of AMPK/mTORC1-Mediated Autophagy by Metformin Reverses Clk1 Deficiency-Sensitized Dopaminergic Neuronal Death.
نویسندگان
چکیده
The autophagy-lysosome pathway (ALP) plays a critical role in the pathology of Parkinson's disease (PD). Clk1 (coq7) is a mitochondrial hydroxylase that is essential for coenzyme Q (ubiquinone) biosynthesis. We have reported previously that Clk1 regulates microglia activation via modulating microglia metabolic reprogramming, which contributes to dopaminergic neuronal survival. This study explores the direct effect of Clk1 on dopaminergic neuronal survival. We demonstrate that Clk1 deficiency inhibited dopaminergic neuronal autophagy in cultured MN9D dopaminergic neurons and in the substantia nigra pars compacta of Clk+/- mutant mice and consequently sensitized dopaminergic neuron damage and behavioral defects. These mechanistic studies indicate that Clk1 regulates the AMP-activated protein kinase (AMPK)/rapamycin complex 1 pathway, which in turn impairs the ALP and TFEB nuclear translocation. As a result, Clk1 deficiency promotes dopaminergic neuronal damage in vivo and in vitro, which ultimately contributes to sensitizing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neuronal death and behavioral impairments in Clk1-deficient mice. Moreover, we found that activation of autophagy by the AMPK activator metformin increases dopaminergic neuronal survival in vitro and in the MPTP-induced PD model in Clk1 mutant mice. These results reveal that Clk1 plays a direct role in dopaminergic neuronal survival via regulating ALPs that may contribute to the pathologic development of PD. Modulation of Clk1 activity may represent a potential therapeutic target for PD.
منابع مشابه
Mechanisms and consequences of hepatic regulation of mTORC1 by metformin
Background In mammals, the ability to sense and respond to both intracellular and extracellular nutrient levels requires the integration and cooperation of multiple complex metabolic regulatory networks. Key among these are the mTOR and AMPK signaling pathways, which are activated in response to increased or decreased cellular energy levels, respectively. These pathways control cell growth, pro...
متن کاملMetformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways
BACKGROUND Metformin is a commonly used drug for the treatment of diabetes. Accumulating evidence suggests that it exerts anti-tumor effects in many cancers, including multiple myeloma (MM); however, the underlying molecular mechanisms have not been clearly elucidated. METHODS The anti-myeloma effects of metformin were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vi...
متن کاملTAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis.
The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice ...
متن کاملAMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumour cells
The role of autophagy in cisplatin anticancer action was investigated using human U251 glioma, rat C6 glioma and mouse L929 fibrosarcoma cell lines. A dose- and time-dependent induction of autophagy was observed in tumour cells following cisplatin treatment, as demonstrated by up-regulation of autophagy-inducing protein beclin-1 and subsequent appearance of acridine orange-stained acidic autoph...
متن کاملMetformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway
Metformin, as an AMP-activated protein kinase (AMPK) activator, can activate autophagy. A study showed that metformin decreased the risk of hepatocellular carcinoma (HCC) in diabetic patients. However, the detailed mechanism in the metformin-mediated anticancer effect remains an open question. Transcription factor CCAAT/enhancer-binding protein delta (CEBPD) has been suggested to serve as a tum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2017